Experiments Prepare to Test Whether Consciousness Arises from Quantum Weirdness

Researchers wish to probe whether consciousness has a basis in quantum mechanical phenomena

Human brain, Neural network, Artificial intelligence and idea concept

nopparit/Getty Images

The brain is a mere piece of furniture in the vastness of the cosmos, subject to the same physical laws as asteroids, electrons or photons. On the surface, its three pounds of neural tissue seem to have little to do with quantum mechanics, the textbook theory that underlies all physical systems, since quantum effects are most pronounced on microscopic scales. Newly proposed experiments, however, promise to bridge this gap between microscopic and macroscopic systems, like the brain, and offer answers to the mystery of consciousness.

Quantum mechanics explains a range of phenomena that cannot be understood using the intuitions formed by everyday experience. Recall the Schrödinger’s cat thought experiment, in which a cat exists in a superposition of states, both dead and alive. In our daily lives there seems to be no such uncertainty—a cat is either dead or alive. But the equations of quantum mechanics tell us that at any moment the world is composed of many such coexisting states, a tension that has long troubled physicists.

Taking the bull by its horns, the cosmologist Roger Penrose in 1989 made the radical suggestion that a conscious moment occurs whenever a superimposed quantum state collapses. The idea that two fundamental scientific mysteries—the origin of consciousness and the collapse of what is called the wave function in quantum mechanics—are related, triggered enormous excitement.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Penrose’s theory can be grounded in the intricacies of quantum computation. Consider a quantum bit, a qubit, the unit of information in quantum information theory that exists in a superposition of a logical 0 with a logical 1. According to Penrose, when this system collapses into either 0 or 1, a flicker of conscious experience is created, described by a single classical bit.

Penrose, together with anesthesiologist Stuart Hameroff, suggested that such collapse takes place in microtubules, tubelike, elongated structural proteins that form part of the cytoskeleton of cells, such as those making up the central nervous system.

These ideas have never been taken up by the scientific community as brains are wet and warm, inimical to the formation of superpositions, at least compared to existing quantum computers that operate at temperatures 10,000 times colder than room temperature to avoid destroying superposition states.

Penrose’s proposal suffers from a flaw when applied to two or more entangled qubits. Measuring one of these entangled qubits instantaneously reveals the state of the other one, no matter how far away. Their states are correlated, but correlation is not causation, and, according to standard quantum mechanics, entanglement cannot be employed to achieve faster-than-light communication. However, per Penrose’s proposal, qubits participating in an entangled state share a conscious experience. When one of them assumes a definite state, we could use this to establish a communication channel capable of transmitting information faster than the speed of light, a violation of special relativity.

In our view, the entanglement of hundreds of qubits, if not thousands or more, is essential to adequately describe the phenomenal richness of any one subjective experience: the colors, motions, textures, smells, sounds, bodily sensations, emotions, thoughts, shards of memories and so on that constitute the feeling of life itself.

In an article published in the open-access journal Entropy, we and our colleagues turned the Penrose hypothesis on its head, suggesting that an experience is created whenever a system goes into a quantum superposition rather than when it collapses. According to our proposal, any system entering a state with one or more entangled superimposed qubits will experience a moment of consciousness.

You, the astute reader, must by now be saying to yourself: But wait a minute here—I don’t ever consciously experience a superposition of states. Any one experience has a definitive quality; it is one thing and not the other. I see a particular shade of red, feel a toothache. I don’t simultaneously experience red and not-red, pain and not-pain.

The definitiveness of any conscious experience naturally arises within the many-worlds interpretation of quantum mechanics. A metaphysical position first put forward by physicist Hugh Everett in 1957, the many-worlds view, posits time’s evolution as an enormously branched tree, with every possible outcome of a quantum event splitting off its own universe. A single qubit entering a superposition gives birth to two universes, in one of which the qubit’s state is 0 while in a twin universe everything is identical except that the qubit’s state is 1.

Entanglement potentially offers something else for brain scientists by providing a natural solution to what is called the binding problem, the subjective unity of every experience that has long posed a key challenge to the study of consciousness. Consider seeing the Statue of Liberty: her face, the crown on her head, the torch in her raised right hand, and so on. All these distinctions and relationships are bound together into a single perception whose substrate might be numerous qubits, all entangled with each other.

To make these esoteric ideas concrete, we propose three experiments that would increasingly shape our thinking on these matters. The first experiment, progressing right now thanks to funding from the Santa Monica–based Tiny Blue Dot Foundation, seeks to provide evidence of the relevance of quantum mechanics to neuroscience in two very accessible test beds: tiny fruit flies and cerebral organoids, the latter lentil-sized assemblies of thousands of neurons grown from human-induced pluripotent stem cells. It is known that the inert noble gas xenon can act as anesthetic in animals and people. Remarkably, an earlier experiment claimed that its anesthetic potency, measured as the concentration of the gas that induces immobility, depends on the specific isotopes of xenon. Two isotopes of an element contain the same number of positively charged protons but different numbers of noncharged neutrons in their nuclei. The chemical properties of isotopes—that is, what they interact with—are similar, by and large, even though their masses and magnetic properties differ slightly.

If fruit flies and organoids can be used to detect different xenon isotopes, the hunt will be on for the exact mechanisms by which a gas that is inert and that remains aloof from binding to proteins or other molecules achieves this. Is it the tiny difference in the mass of these isotopes (131 versus 132 nucleons) that makes the difference? Or is it their nuclear spin, a quantum mechanical property of the nucleus? These xenon isotopes differ substantially in their nuclear spin; some have zero spin and others 1/2 or 3/2.

These xenon experiments will inform a second follow-on experiment in which we will attempt to couple qubits to brain organoids in a way that allows entanglement to spread between biological and technical qubits. The final experiment, which at this stage is still a purely conceptual one, aims to enhance consciousness by coupling engineered quantum states to a human brain in an entangled manner. The person may then experience an expanded state of consciousness like those accessed under the influence of ayahuasca or psilocybin.

Both quantum engineering and the design of brain-machine interfaces are progressing rapidly. It may not be beyond human ingenuity to directly probe and expand our conscious mind by making use of quantum science and technology.

This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

Hartmut Neven is the founder and lead of Google Quantum AI, a lab that aims to build a large-scale, error-corrected quantum computer to solve problems that are intractable with today's processors. Neven takes a cross-disciplinary approach to quantum computing as an entrepreneur, physicist, AI researcher and neuroscientist.

More by Hartmut Neven

Christof Koch is a neuroscientist at the Allen Institute and at the Tiny Blue Dot Foundation, the former president of the Allen Institute for Brain Science, and a former professor at the California Institute of Technology. His latest book is Then I am myself the world. Koch writes regularly for a range of media, including Scientific American. He lives in the Pacific Northwest.

More by Christof Koch